
Perkins, S. E., Alexander, L. V. & Nairn, J. R. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 39, 1–5 (2012).
Perkins-Kirkpatrick, S. E. & Lewis, S. C. Increasing trends in regional heatwaves. Nat. Commun. 11, 1–8 (2020).
Jha, U. C., Bohra, A. & Singh, N. P. Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant. Breed. 133, 679–701 (2014).
Mall, R. K., Gupta, A. & Sonkar, G. Effect of climate change on agricultural crops. In Current Developments in Biotechnology and Bioengineering 23–46Elsevier, (2017).
Lesk, C. et al. Compound heat and moisture extreme impacts on global crop yields under climate change. Nat. Rev. Earth Environ. 3, 872–889 (2022).
Sita, K. et al. Food legumes and rising temperatures: effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Front. Plant. Sci. 8, 1658 (2017).
Dave, K. et al. Climate change impacts on legume physiology and ecosystem dynamics: a multifaceted perspective. Sustainability 16, 6026 (2024).
Sarkar, S. et al. Abiotic stresses: alteration of composition and grain quality in food legumes. Agronomy 11, 2238 (2021).
Dhuppar, P., Biyan, S., Chintapalli, B. & Rao, S. Lentil crop production in the context of climate change: an appraisal. Indian Res. J. Ext. Educ. 2, 33–35 (2012).
Choukri, H. et al. Heat and drought stress impact on phenology, grain yield, and nutritional quality of lentil (Lens culinaris Medikus). Front. Nutr. 7, 596307 (2020).
Ford, R., Rubeena, Redden, R. J., Materne, M. & Taylor, P. W. J. Lentil. In Genome Mapping and Molecular Breeding in Plants: Pulses, Sugar and Tuber Crops 91–108 (Springer, (2007).
Singh, B. et al. Springer,. Understanding abiotic stress responses in lentil under changing climate regimes. In Developing Climate Resilient Grain and Forage Legumes 179–204 (2022).
Bhatty, R. S. Composition and quality of lentil (Lens culinaris Medik): a review. Can. Inst. Food Technol. J. 21, 144–160 (1998).
Kumar, S., Rajendran, K., Kumar, J., Hamwieh, A. & Baum, M. Current knowledge in lentil genomics and its application for crop improvement. Front. Plant. Sci. 6, 125110 (2015).
Kaale, L. D., Siddiq, M. & Hooper, S. Lentil (Lens culinaris Medik) as nutrient-rich and versatile food legume: a review. Legum Sci. 5, e169 (2023).
Reda, A. Lentil (Lens culinaris Medikus): current status and future prospect of production in Ethiopia. Adv. Plants Agric. Res. 2, 40 (2015).
FAOSTAT. Food and Agriculture Organization corporate statistical database. (2024). https://www.fao.org/faostat/en/#data/QCL
MoA&FW. Third advance estimates of production of food grains, oilseeds and other commercial crops for the year 2023-24. (2024). https://desagri.gov.in/statistics-type/advance-estimates
Kumar, U., Patel, G. A., Chudhari, R. P., Darji, S. S. & Raghav, R. S. Cluster frontline demonstration: an effective technology dissemination approach for enhancing productivity and profitability of black gram (Vigna mungo). Legum Res. 46, 1356–1360 (2023).
Muehlbauer, F. J. et al. Application of biotechnology in breeding lentil for resistance to biotic and abiotic stress. Euphytica 147, 149–165 (2006).
Zeroual, A., Baidani, A. & Idrissi, O. Drought stress in lentil (Lens culinaris medik) and approaches for its management. Horticulturae 9, 1 (2022).
Skliros, D. et al. Global metabolomics analysis reveals distinctive tolerance mechanisms in different plant organs of lentil (Lens culinaris) upon salinity stress. Plant. Soil. 429, 451–468 (2018).
Bhandari, K. et al. Heat stress at reproductive stage disrupts leaf carbohydrate metabolism, impairs reproductive function, and severely reduces seed yield in lentil. J. Crop Improv. 30, 118–151 (2016).
Sehgal, A. et al. Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Front. Plant. Sci. 8, 1776 (2017).
Choudhury, D. R., Tarafdar, S., Das, M. & Kundagrami, S. Screening lentil (Lens culinaris Medik.) Germplasms for heat tolerance. Trends Biol. Sci. 5, 143–146 (2012).
Sehgal, A. et al. Influence of drought and heat stress, applied independently or in combination during seed development, on qualitative and quantitative aspects of seeds of lentil (Lens culinaris Medikus) genotypes, differing in drought sensitivity. Plant. Cell. Environ. 42, 198–211 (2019).
El Haddad, N. et al. Metabolic mechanisms underlying heat and drought tolerance in lentil accessions: implications for stress tolerance breeding. Plants 12, 3962 (2023).
Delahunty, A., Nuttall, J., Nicolas, M. & Brand, J. Genotypic heat tolerance in lentil. In Proceedings of the 17th ASA Conference pp. 20–24 (2015).
Kumar, S., Barpete, S., Kumar, J., Gupta, P. & Sarker, A. Global lentil production: constraints and strategies. SATSA Mukh Ann. Tech. 17, 1–13 (2013).
Bhandari, K. et al. Differential heat sensitivity of two cool-season legumes, chickpea and lentil, at the reproductive stage, is associated with responses in pollen function, photosynthetic ability and oxidative damage. J. Agron. Crop Sci. 206, 734–758 (2020).
Wang, J., Gan, Y. T., Clarke, F. & McDonald, C. L. Response of chickpea yield to high temperature stress during reproductive development. Crop Sci. 6, 2171–2178 (2006).
Kaushal, N. et al. Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Funct. Plant. Biol. 40, 1334–1349 (2013).
Sita, K. et al. Impact of heat stress during seed filling on seed quality and seed yield in lentil (Lens culinaris Medikus) genotypes. J. Sci. Food Agric. 98, 5134–5141 (2018).
Rosielle, A. A. & Hamblin, J. Theoretical aspects of selection for yield in stress and non-stress environment. Crop Sci. 21, 943–946 (1981).
Farshadfar, E., Mohammadi, R., Farshadfar, M. & Dabiri, S. Relationships and repeatability of drought tolerance indices in wheat-rye disomic addition lines. Aust J. Crop Sci. 7, 130–138 (2013).
Ramirez-Vallejo, P. & Kelly, J. D. Traits related to drought resistance in common bean. Euphytica 99, 127–136 (1998).
Moosavi, S. S. et al. Introduction of new indices to identify relative drought tolerance and resistance in wheat genotypes. Desert 12, 165–178 (2008).
Fischer, R. A. & Wood, J. T. Drought resistance in spring wheat cultivars. III. Yield associations with morpho-physiological traits. Aust J. Agric. Res. 30, 1001–1020 (1979).
Basavaraj, P. S. et al. Identification and molecular characterization of high-yielding, blast resistant lines derived from Oryza rufipogon Griff. In the background of ‘Samba Mahsuri’ rice. Genet. Resour. Crop Evol. 68, 1905–1921 (2021).
Fernandez, G. C. Effective selection criteria for assessing plant stress tolerance. In Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress pp. 257–270 (1992).
Bouslama, M. & Schapaugh, W. T. Stress tolerance in soybean, part 1: evaluation of three screening techniques for heat and drought tolerance. Crop Sci. 2, 933–937 (1984).
Gavuzzi, P. et al. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Can. J. Plant. Sci. 77, 523–531 (1997).
Pour-Aboughadareh, A. et al. iPASTIC: an online toolkit to estimate plant abiotic stress indices. Appl. Plant. Sci. 7, e11278 (2019).
Singh, A. et al. Springer,. Breeding for abiotic stress tolerance in lentil in genomic era. In Genomic Designing for Abiotic Stress Resistant Pulse Crops 145–167 (2022).
Bidinger, F. R., Mahalakshmi, V. & Rao, G. D. P. Assessment of drought resistance in pearl millet [Pennisetum americanum (L.) Leeke]. I. factors affecting yields under stress. Aust J. Agric. Res. 38, 37–48 (1987).
Farshadfar, E. & Javadinia, J. Evaluation of chickpea (Cicer arietinum L.) genotypes for drought tolerance. Seed Plant. Improv. J. 27, 517–537 (2011).
Aravind, J., Mukesh Sankar, S., Wankhede, D. P. & Kaur, V. augmentedRCBD: analysis of augmented randomised complete block designs. (2023). https://doi.org/10.5281/ZENODO.8015094
Wei, T. & Simko, V. R package ‘corrplot’: visualization of a correlation matrix (version 0.92). (2021). https://github.com/taiyun/corrplot
Kassambara, A. & Mundt, F. Factoextra: extract and visualize the results of multivariate data analyses. (2020). https://CRAN.R-project.org/package=factoextra
Le, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).
Gu, Z., Eils, G. U. L., Schlesner, R. & Brors, M. Circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).
Core Team, R. R: A language and environment for statistical computing [computer software]. Vienna: R foundation for statistical computing. (2023). https://www.R-project.org
Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).
Nouri, A., Etminan, A., Teixeira da Silva, J. A. & Mohammadi, R. Assessment of yield, yield-related traits and drought tolerance of durum wheat genotypes (Triticum turgidum var. Durum desf). Aust J. Crop Sci. 5, 8–16 (2011).
Kumar, J. et al. Association of functional markers with flowering time in lentil. J. Appl. Genet. 59, 9–21 (2018).
Summerfield, R. J., Roberts, E. H., Erskine, W. & Ellis, R. Effects of temperature and photoperiod on flowering in lentils (Lens culinaris Medic). Ann. Bot. 56, 659–671 (1985).
Erskine, W., Ellis, R. H., Summerfield, R. J., Roberts, E. H. & Hussain, A. Characterization of responses to temperature and photoperiod for time to flowering in a world lentil collection. Theor. Appl. Genet. 80, 193–199 (1990).
Mukherjee, B. et al. Growth, nodulation, yield, nitrogen uptake, and economics of lentil as influenced by sowing time, tillage, and management practices. Front. Sustain. Food Syst. 7, 1151111 (2023).
Venugopalan, V. K. et al. Foliar spray of micronutrients alleviates heat and moisture stress in lentil (Lens culinaris Medik) grown under rainfed field conditions. Front. Plant. Sci. 13, 847743 (2022).
Wright, D. M. et al. Understanding photothermal interactions will help expand production range and increase genetic diversity of lentil (Lens culinaris Medik). Plants People Planet. 3, 171–181 (2021).
Maphosa, L., Preston, A. & Richards, M. F. Effect of sowing date and environment on phenology, growth and yield of lentil (Lens culinaris Medikus.) Genotypes. Plants 12, 474 (2023).
Moosavi, S. G., Seghatoleslami, M. J. & Delarami, M. R. Effect of sowing date and plant density on yield and yield components of lentil (Lens culinaris Cv. Sistan). Annu. Res. Rev. Biol. 4, 296–305 (2013).
Lan, J. Comparison of evaluating methods for agronomic drought resistance in crops. Acta Agric. Bor-Occidsinic. 7, 85–87 (1998).
Barrs, H. D. & Weatherley, P. E. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J. Biol. Sci. 15, 413–428 (1962).
Mohammadi, M., Karimizadeh, R. & Abdipour, M. Evaluation of drought tolerance in bread wheat genotypes under dryland and supplemental irrigation conditions. Aust J. Crop Sci. 5, 487–493 (2011).
Sareen, S., Tyagi, B. S., Tiwari, V. & Sharma, I. Response estimation of wheat synthetic lines to terminal heat stress using stress indices. J. Agric. Sci. 4, 97 (2012).
Erdemcı, İ. Investigation of genotype× environment interaction in chickpea genotypes using AMMI and GGE biplot analysis. Turk. J. Field Crops. 23, 20–26 (2018).
Shabani, A., Zebarjadi, A., Mostafaei, A., Saeidi, M. & Poordad, S. S. Evaluation of drought stress tolerance in promising lines of chickpea (Cicer arietinum L.) using drought resistance indices. Env Stresses Crop Sci. 11, 289–299 (2018).
Aktar-Uz-Zaman, M. et al. Selection of lentil (Lens culinaris Medik.) Genotypes suitable for high-temperature conditions based on stress tolerance indices and principal component analysis. Life 12, 1719 (2022).
Singh, S. et al. Assessment of multiple tolerance indices for salinity stress in bread wheat (Triticum aestivum L). J. Agric. Sci. 7, 49 (2015).
Abd El-Mohsen, A. A., El-Shafi, A., Gheith, M. A., Suleiman, H. S. & E. M. S., & Using different statistical procedures for evaluating drought tolerance indices of bread wheat genotypes. Adv. Agric. Biol. 4, 19–30 (2015).
Poudel, P. B., Poudel, M. R. & Puri, R. R. Evaluation of heat stress tolerance in spring wheat (Triticum aestivum L.) genotypes using stress tolerance indices in western region of Nepal. J. Agric. Food Res. 5, 100179 (2021).
Ivić, M. et al. Screening of wheat genotypes for nitrogen deficiency tolerance using stress screening indices. Agronomy 11, 1544 (2021).
Jha, U. C., Basu, P., Shil, S. & Singh, N. P. Evaluation of drought tolerance selection indices in chickpea genotypes. Int. J. Bio-resour Stress Manag. 7, 1244–1248 (2016).
Puri, R. R., Gautam, N. R. & Joshi, A. K. Exploring stress tolerance indices to identify terminal heat tolerance in spring wheat in Nepal. J. Wheat Res. 7, 13–17 (2015).
Ceylan, H. A., Türkan, I. & Sekmen, A. H. Effect of coronatine on antioxidant enzyme response of chickpea roots to combination of PEG-induced osmotic stress and heat stress. J. Plant. Growth Regul. 32, 72–82 (2013).
Talebi, R., Fayaz, F. & Naji, A. M. Effective selection criteria for assessing drought stress tolerance in durum wheat (Triticum durum Desf). Gen. Appl. Plant. Physiol. 35, 64–74 (2009).
Kaya, Y., Palta, C. & Taner, S. Additive main effects and multiplicative interactions analysis of yield performances in bread wheat genotypes across environments. Turk. J. Agric. For. 26, 275–279 (2002).
Naghavi, M. R., Aboughadareh, A. P. & Khalili, M. Evaluation of drought tolerance indices for screening some of corn (Zea mays L.) cultivars under environmental conditions. Not Sci. Biol. 5, 388–393 (2013).
Thanaa, H., MNA, E. & EAM, A., & Tolerance indices and cluster analysis to evaluate some bread wheat genotypes under water deficit conditions. Alex J. Agric. Sci. 64, 245–256 (2019).
Jha, U. C., Jha, R., Singh, N. P., Shil, S. & Kole, P. C. Heat tolerance indices and their role in selection of heat stress tolerant chickpea (Cicer arietinum) genotypes. Indian J. Agric. Sci. 88, 260–267 (2018).